3.7 Classical control, pseudo-continuous method

3.7.1 Generalities

In this section, the approximations introduced in Section 3.6 will be applied for the classical
control through the pseudo-continuous method.

Initially, the equivalent transfer function of a standard controller will be determined. Therefore
study the basic relations on the level of the pseudo-continuous control circuit will be studied and a
resulting small time constant introduced. Afterwards, the variable and symmetric optimum criteria
will be resumed, which permit a simple but efficient dimensioning of the standard controller
coefficients. Finally, the particularities of the cascaded control will be mentioned.

For the choice and dimensioning of the controllers, the limitation of the controller output will be
discarded, assuming sufficiently small variations. Subsequently, the correction measures of the
controller dynamic behaviour should be considered when the limitations take place.

In relation with the sampled method, a significant simplification is achieved whilst applying the
methods of a continuous control. These methods are presented in an exhaustive manner in [1],
Chapter 10.

3.7.2 Equivalent transfer function of a standard controller

The established relations in Section 3.6.14 allow the deduction of the equivalent transfer function
for the pseudo-continuous method. As an example, the process for a PID controller will be shown
([1], § 9.5.4).

The output signal yz[k] of a digital PID controller is given by the components P, | and D. With a
control error of e[k] = w[k] — y[k], one obtains
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It is noted that the output signal y; of the controller forms either the control signal u.,, or the
setpoint w, in the case of the cascaded control.
With the help of the relations (3.112) and (3.116), an approximation can be made

1+sT./2 sT,
s)=K e(s)+K —E""e(s)+K,—~Et—e(s 3.120
()2 K,2(5) K T e(5) 4 e (3.120)
from which the equivalent transfer function becomes evident.
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In the present case, the lowercase symbols are reserved for the Laplace transformation since they
refer to normalised quantities.
A comparison with the transfer function of a continuous PID controller ([1], § 9.2.4)
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Due to the use of the pseudo-continuous method for a PID controller, an additional small time
constant T /2 appears. This happens thanks to the fact that the D-component is implemented
approximately by the difference of values between two sampling instants.

Table 3.4 contains the expressions for the equivalent transfer functions Gg.(s) of different
standard controllers. It is noted that the PI controller does not possess the small time constant T,/2.
The | controller presents a particularity: the small time constant of T;/2 appears here on the
numerator forming a zero in Gge(s).

Table 3.4 Equivalent transfer function Gg.(s) and relations between the digital controllers and continuous
controllers.
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3.7.3 Relations between the coefficients of a digital controller and the time constants of
a continuous controller

A comparison between (3.121) on one hand and (3.122), (3.123) on the other hand shows that
between the coefficients of a digital controller and a continuous controller, the following relations
exist for the PID controller:
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Therefore, from the time constants T;, T, and T, of the continuous controller, the coefficients K;, K,
and K of the digital controller can be calculated as
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In Table 3.4, similarly the corresponding relations for the other standard controllers are found.



3.7.4 Block diagram of the pseudo-continuous control circuit

Fig. 3.50 shows the block diagram of the pseudo-continuous control circuit with the equivalent
transfer function Gg.(s) of the controller according to Table 3.4. As reminded, the latter could contain
a small time constant. The second block with G/(s)=1/(1+s7,) and the third block with
Gpmels) = 1/(1+sT¢/2) model the delay T, caused by the processing time of the control algorithm and
the hold element (§ 3.6.15). In certain cases, it is possible that there is no hold element. Therefore,
Grels) =1 has to be posed. The action module has been modelled by the block with the transfer
function of G.n(s) = Kem/(1+5T,), Where T, is the small time constant. The controlled system has the
transfer function Gy(s). Finally, the feedback chain includes the measuring device with the transfer
function of Gpes(s) = 1/(1+sTyes). Most often, the time constant Ty, can be discarded by setting
Gues(s) = 1. Sometimes, a small time constant needs to be introduced, such as for the digital speed
measurement according to Table 3.3 for example. On this level, the final smoothing filter must be
taken into account.
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Fig. 3.50 Block diagram of the pseudo-continuous control circuit.

3.7.5 Resulting small time constant

In order to facilitate the pseudo-continuous dimensioning of the digital controllers, it is sensible to
gather the small time constants into one, according to the principle of the sum of small time
constants ([1], § 3.6.8). It is therefore possible to reduce significantly the block diagram of the control
circuit, as shown by Fig 3.51.
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Fig. 3.51 Reduced block diagram of the pseudo-continuous control circuit.

Instead of the action module, only one block appears with a transfer function of
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The term K., is the transfer factor of the action module. The resulting small time constant is given
by

TpE = KTE +Tcm +Tr +TMes (3127)

The factor k depends on the employed controller type. This factor is indicated in Table 3.5



Table 3.5 Factor « for the calculation of the resulting small time constant T.

Controller | Pl PID

K 0 0.5 1

During this transformation, a block needs to be introduced with the transfer function 1/Ges(s)
related to the setpoint w ([1], § 10.2.3). If the time constant Ty, is small, this block can be omitted.

3.7.6 Choice and pseudo-continuous dimensioning of standard controllers

The choice and pseudo-continuous dimensioning of standard controllers can be done according to
the usual dimensioning criteria of standard controllers ([1], Chapter 10). In the following, variable
and symmetric optimum criteria will be presented.

With this dimensioning, the time constants T, T,, T, of the continuous controller are obtained.
Through the relations contained in Table 3.4, the coefficients K, K,, K4 of the digital controller are
found. These coefficients have to be introduced into the control algorithm.

3.7.7 Dimensioning according to the Magnitude Optimum criterion

For the dimensioning according to the variable optimum criterion (criterion on the harmonic
response), the most frequent case with hold element is to be considered. A controlled system of
order n, = 2 is assumed with two dominant time constants T; and T,. Its transfer function is
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where K; is the transfer factor. By setting T,=0 or also T;= 0, a controlled system of order n, =1 or 0
is obtained.
The Magnitude Optimum criterion ([1], Sect. 10.3) for the choice and dimensioning of a standard
controller requires the following steps:
e according to the order of the controlled system n,=2,1 or O, a PID, Pl or | controller must be
chosen (the integral component is needed to cancel the steady state control error);
e then, the resulting small time constant T, can be determined with the aid of (3.127);
e with the controller’s time constants T, and T,, the time constants of the controlled systems are
compensated
,=T; I,=T, (3.129)
while supposing that T; > T, (it is not admissible to compensate a small time constant ([1],
§ 10.3.4);
e the controller’s integration time constant is then expressed as

T, =2KT,, (3.130)
where
K=K _K (3.131)
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is the resulting transfer factor.

Also, the dimensioning is very simple. The rules for the three controllers I, Pl and PID are resumed
in Table 3.6.



Table 3.6 Choice and dimensioning of the standard controllers according to the variable optimum criterion.

N Controller T, T, T;

0 I - - 2KTpe
1 Pl T, - 2KTpe
2 PID T, T, 2KTpe

It has to be noted that the standard controllers are not well adapted for the higher order systems
([1], Section 10.3). In practice, this does not mean a too strict restriction as most often the cascaded
control is applied when the controlled subsystems have an order of n,=1 or 2. Moreover, the
standard controllers are poorly adapted to control the oscillating systems.

3.7.8 Symmetrical optimum based dimensioning

The dimensioning, based on the Magnitude Optimum criterion and discussed in the previous
section, yields a very good dynamic behaviour while subjected to setpoint variations. The dynamic
behaviour related to the disturbance variable is acceptable when the dominating time constants are
not too big as compared to the small time constant ([1], Section 10.3).

If, on the contrary, a rapid reaction to the disturbance value variations is demanded, especially
when the dominating time constants are big, the controller should be dimensioned according to the
symmetrical optimum (See Appendix A1.2). If the controlled system shows an integral behaviour, this
dimensioning criterion is the only possible.

In this context, the topic is limited to the most important case in the power electronics domain,
namely the first order controlled system with integral behaviour. Its transfer function is then given by
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where Tl is the integration time constant. Moreover, the presence of a hold element is supposed.

The symmetrical optimum criterion (A1.2) for the selection and dimensioning of a standard
controller requires the following procedure:

e while the system order is n, = 1, the Pl controller must be selected (even if there is an integral
behaviour in the controlled system, it is inevitable to choose a controller with integral
component in order to mitigate the influence of the disturbance variable in the steady state ;

e then, the resulting small time constant T, can be determined with the help of (3.127);

e the controller’s time constant T, is to be adapted to T, according to

T,=4T, (3.133)
e the controller’s integration time constant is obtained by
T ..
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e itis necessary to add a corrector for the setpoint variable with the time constant
7—cw :Tn :4TpE (3135)

As it is explained in Appendix Al, a corrector must be added for the setpoint variable, also known
as the setpoint filter. Actually, with the symmetrical optimum based dimensioning, a very good
dynamic behaviour is obtained in regard of the disturbance variable. However, a large overshoot



appears during the set-point variations (A1.2.4). This overshoot can be strongly reduced with the aid
of the setpoint filter with the transfer function

6. (s)= 21

w(s) 1+sT,
At the controller’s input, the setpoint w’ is applied.

(3.136)

3.7.9 Conditions allowing the use of pseudo-continuous method

The pseudo-continuous method can be applied for the standard controllers if the sampling
interval satisfies the condition

T, <T, /2 (3.137)
where T, is the smallest of the dominating time constants. Sometimes it is possible to admit Tz < T,.
The small time constant T, = T, + Ty, introduced by the control and measuring device must respond
to the condition T, < T,,;/4.

If the controlled system does not have any dominating time constant (proportional behaviour),
necessitating the application of an | controller, the sampling interval must respect the condition

T, <T, (3.138)

It is generally more restrictive (in terms of T,) than the condition (3.137).
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Fig. 3.52 The domain of the poles on the z-plane for a pseudo-continuous processing of the classical control;
1: z= e for the dominating time constants; 2: z = e for a proportional behaviour of the controlled

system.

Fig. 3.52 shows the domain of the poles on the z-plane allowing the use of the pseudo-continuous
method. The domain is practically limited to the real poles. Effectively, the standard controllers are
not well adopted to control a poorly dampened oscillating system.

Many comparative calculations between the sampled and pseudo-continuous dimensioning have
shown the validity of the pseudo-continuous method, in terms of either the controller coefficient
values or the trajectory of transient phenomena.





