
3.7 Classical control, pseudo-continuous method 

3.7.1 Generalities 

In this section, the approximations introduced in Section 3.6 will be applied for the classical 
control through the pseudo-continuous method.  

Initially, the equivalent transfer function of a standard controller will be determined. Therefore 
study the basic relations on the level of the pseudo-continuous control circuit will be studied and a 
resulting small time constant introduced. Afterwards, the variable and symmetric optimum criteria 
will be resumed, which permit a simple but efficient dimensioning of the standard controller 
coefficients. Finally, the particularities of the cascaded control will be mentioned.  

For the choice and dimensioning of the controllers, the limitation of the controller output will be 
discarded, assuming sufficiently small variations. Subsequently, the correction measures of the 
controller dynamic behaviour should be considered when the limitations take place.  

In relation with the sampled method, a significant simplification is achieved whilst applying the 
methods of a continuous control. These methods are presented in an exhaustive manner in [1], 
Chapter 10.  

3.7.2 Equivalent transfer function of a standard controller 

The established relations in Section 3.6.14 allow the deduction of the equivalent transfer function 
for the pseudo-continuous method. As an example, the process for a PID controller will be shown 
([1], § 9.5.4).  

The output signal yR[k] of a digital PID controller is given by the components P, I and D. With a 
control error of e[k] = w[k] – y[k], one obtains  
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It is noted that the output signal yR of the controller forms either the control signal ucm, or the 
setpoint wa in the case of the cascaded control.  

With the help of the relations (3.112) and (3.116), an approximation can be made 

( ) ( ) ( ) ( )1 / 2
1 / 2

E E
R p i d

E E

sT sT
y s K e s K e s K e s

sT sT
+

≅ + +
+

(3.120) 

from which the equivalent transfer function becomes evident. 
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In the present case, the lowercase symbols are reserved for the Laplace transformation since they 
refer to normalised quantities.  

A comparison with the transfer function of a continuous PID controller ([1], § 9.2.4) 
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shows that 
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Due to the use of the pseudo-continuous method for a PID controller, an additional small time 
constant TE/2 appears. This happens thanks to the fact that the D-component is implemented 
approximately by the difference of values between two sampling instants.  

Table 3.4 contains the expressions for the equivalent transfer functions GRe(s) of different 
standard controllers. It is noted that the PI controller does not possess the small time constant TE/2. 
The I controller presents a particularity: the small time constant of TE/2 appears here on the 
numerator forming a zero in GRe(s).  

 
Table 3.4 Equivalent transfer function GRe(s) and relations between the digital controllers and continuous 
controllers.  
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3.7.3 Relations between the coefficients of a digital controller and the time constants of 
a continuous controller  

 
A comparison between (3.121) on one hand and (3.122), (3.123) on the other hand shows that 

between the coefficients of a digital controller and a continuous controller, the following relations 
exist for the PID controller:  
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Therefore, from the time constants Ti, Tn and Tv of the continuous controller, the coefficients Ki, Kp 
and Kd of the digital controller can be calculated as  
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In Table 3.4, similarly the corresponding relations for the other standard controllers are found.  
 
 



3.7.4 Block diagram of the pseudo-continuous control circuit  
 
Fig. 3.50 shows the block diagram of the pseudo-continuous control circuit with the equivalent 

transfer function GRe(s) of the controller according to Table 3.4. As reminded, the latter could contain 
a small time constant. The second block with Gr(s) = 1/(1+sTr) and the third block with 
Gme(s) = 1/(1+sTE/2) model the delay Tr caused by the processing time of the control algorithm and 
the hold element (§ 3.6.15). In certain cases, it is possible that there is no hold element. Therefore, 
Gme(s) = 1 has to be posed. The action module has been modelled by the block with the transfer 
function of Gcm(s) = Kcm/(1+sTcm), where Tcm is the small time constant. The controlled system has the 
transfer function Gs(s). Finally, the feedback chain includes the measuring device with the transfer 
function of GMes(s) = 1/(1+sTMes). Most often, the time constant TMes can be discarded by setting 
GMes(s) = 1. Sometimes, a small time constant needs to be introduced, such as for the digital speed 
measurement according to Table 3.3 for example. On this level, the final smoothing filter must be 
taken into account.  

 

 
Fig. 3.50 Block diagram of the pseudo-continuous control circuit. 

 

3.7.5 Resulting small time constant  
 
In order to facilitate the pseudo-continuous dimensioning of the digital controllers, it is sensible to 

gather the small time constants into one, according to the principle of the sum of small time 
constants ([1], § 3.6.8). It is therefore possible to reduce significantly the block diagram of the control 
circuit, as shown by Fig 3.51.  

 

 
Fig. 3.51 Reduced block diagram of the pseudo-continuous control circuit. 

Instead of the action module, only one block appears with a transfer function of  
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The term Kcm is the transfer factor of the action module. The resulting small time constant is given 
by  

pE E cm r MesT T T T Tκ= + + +  (3.127) 

The factor κ depends on the employed controller type. This factor is indicated in Table 3.5 
 
 
 



Table 3.5 Factor κ for the calculation of the resulting small time constant TpE. 

Controller I PI PID 

κ 0 0.5 1 

 
During this transformation, a block needs to be introduced with the transfer function 1/GMes(s) 

related to the setpoint w ([1], § 10.2.3). If the time constant TMes is small, this block can be omitted.  
 

3.7.6 Choice and pseudo-continuous dimensioning of standard controllers  
 
The choice and pseudo-continuous dimensioning of standard controllers can be done according to 

the usual dimensioning criteria of standard controllers ([1], Chapter 10). In the following, variable 
and symmetric optimum criteria will be presented.  

With this dimensioning, the time constants Ti, Tn, Tv of the continuous controller are obtained. 
Through the relations contained in Table 3.4, the coefficients Ki, Kp, Kd of the digital controller are 
found. These coefficients have to be introduced into the control algorithm.  

3.7.7 Dimensioning according to the Magnitude Optimum criterion  
 
For the dimensioning according to the variable optimum criterion (criterion on the harmonic 

response), the most frequent case with hold element is to be considered. A controlled system of 
order ns = 2 is assumed with two dominant time constants T1 and T2. Its transfer function is  
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where Ks is the transfer factor. By setting T2 = 0 or also T1 = 0, a controlled system of order ns = 1 or 0 
is obtained.  

The Magnitude Optimum criterion ([1], Sect. 10.3) for the choice and dimensioning of a standard 
controller requires the following steps:  
• according to the order of the controlled system ns = 2, 1 or 0, a PID, PI or I controller must be 

chosen (the integral component is needed to cancel the steady state control error);  
• then, the resulting small time constant TpE can be determined with the aid of (3.127);  
• with the controller’s time constants Tn and Tv, the time constants of the controlled systems are 

compensated  
1nT T=  ;   2vT T=  (3.129) 

while supposing that T1 ≥ T2 (it is not admissible to compensate a small time constant ([1], 
§ 10.3.4);  

• the controller’s integration time constant is then expressed as  
•  

2i pET KT=  (3.130) 
where  
 

cm sK K K=  (3.131) 
is the resulting transfer factor.  
 
Also, the dimensioning is very simple. The rules for the three controllers I, PI and PID are resumed 

in Table 3.6.  
  



Table 3.6 Choice and dimensioning of the standard controllers according to the variable optimum criterion.  

ns Controller  Tn  Tv  Ti  
0 I  - - 2KTpE  
1 PI  T1  - 2KTpE  
2 PID  T1  T2  2KTpE  

 
It has to be noted that the standard controllers are not well adapted for the higher order systems 

([1], Section 10.3). In practice, this does not mean a too strict restriction as most often the cascaded 
control is applied when the controlled subsystems have an order of ns = 1 or 2. Moreover, the 
standard controllers are poorly adapted to control the oscillating systems.  

 

3.7.8 Symmetrical optimum based dimensioning  
 
The dimensioning, based on the Magnitude Optimum criterion and discussed in the previous 

section, yields a very good dynamic behaviour while subjected to setpoint variations. The dynamic 
behaviour related to the disturbance variable is acceptable when the dominating time constants are 
not too big as compared to the small time constant ([1], Section 10.3).  

If, on the contrary, a rapid reaction to the disturbance value variations is demanded, especially 
when the dominating time constants are big, the controller should be dimensioned according to the 
symmetrical optimum (See Appendix A1.2). If the controlled system shows an integral behaviour, this 
dimensioning criterion is the only possible.  

In this context, the topic is limited to the most important case in the power electronics domain, 
namely the first order controlled system with integral behaviour. Its transfer function is then given by  
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where TI is the integration time constant. Moreover, the presence of a hold element is supposed.  
The symmetrical optimum criterion (A1.2) for the selection and dimensioning of a standard 

controller requires the following procedure:  
 
• while the system order is ns = 1, the PI controller must be selected (even if there is an integral 

behaviour in the controlled system, it is inevitable to choose a controller with integral 
component in order to mitigate the influence of the disturbance variable in the steady state ;  

• then, the resulting small time constant TpE can be determined with the help of (3.127);  
• the controller’s time constant Tn is to be adapted to TpE according to 

  
4n pET T=  (3.133) 

• the controller’s integration time constant is obtained by  
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• it is necessary to add a corrector for the setpoint variable with the time constant  
4cw n pET T T= =  (3.135) 

 
As it is explained in Appendix A1, a corrector must be added for the setpoint variable, also known 

as the setpoint filter. Actually, with the symmetrical optimum based dimensioning, a very good 
dynamic behaviour is obtained in regard of the disturbance variable. However, a large overshoot 



appears during the set-point variations (A1.2.4). This overshoot can be strongly reduced with the aid 
of the setpoint filter with the transfer function  
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At the controller’s input, the setpoint w’ is applied.  

3.7.9 Conditions allowing the use of pseudo-continuous method  
 
The pseudo-continuous method can be applied for the standard controllers if the sampling 

interval satisfies the condition  

/ 2E nsT TT  (3.137) 

where Tns is the smallest of the dominating time constants. Sometimes it is possible to admit TE < Tns. 
The small time constant Tp = Tcm + TM, introduced by the control and measuring device must respond 
to the condition Tp < Tns/4.  

If the controlled system does not have any dominating time constant (proportional behaviour), 
necessitating the application of an I controller, the sampling interval must respect the condition  

E pT TT  (3.138) 

It is generally more restrictive (in terms of Tp) than the condition (3.137).  
 

 
Fig. 3.52 The domain of the poles on the z-plane for a pseudo-continuous processing of the classical control; 
1: z = e-TE/Tk for the dominating time constants; 2: z = e-TE/Tp for a proportional behaviour of the controlled 
system.  

Fig. 3.52 shows the domain of the poles on the z-plane allowing the use of the pseudo-continuous 
method. The domain is practically limited to the real poles. Effectively, the standard controllers are 
not well adopted to control a poorly dampened oscillating system.  

Many comparative calculations between the sampled and pseudo-continuous dimensioning have 
shown the validity of the pseudo-continuous method, in terms of either the controller coefficient 
values or the trajectory of transient phenomena.  
 




